
A PLANE STEADY-STATE FREE-BOUNDARY PROBLEM 

FOR THE NAVIER--STOKES EQUATIONS 
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The model problem of the plane slow s teady-s ta te  motion of a viscous incompress ib le  fluid 
with a free boundary is investigated. It is assumed that the free boundary does not have any 
points in common with the solid surfaces  confining the fluid. By the solution of the auxil iary 
fixed-boundary problem for the Navier-Stokes  equations the problem is reduced to an opera-  
tor equation describing the form of the free surface~ The existence and uniqueness problems 
for the solution and its qualitative behavior are  analyzed. 

1 .  S t a t e m e n t  o f  t h e  P r o b l e m  

Consider the plane s teady-s ta te  motion of a viscous incompressible  fluid in a curvi l inear  two-d imen-  
sional channel, the upper boundary of which is free,  while the lower boundary (bottom) represen ts  a solid 
rec t i l inear  wall on which there are  periodically distributed regions of fluid ingress  and eg ress .  We in t ro -  
duce dimensionless var iables ,  r e fe r r ing  distances to the average depth h of the fluid, velocit ies to h'~v (v 
is the kinematic viscosi ty  coefficient), and the pressure  to ph-2p 2 (p is the density of the fluid). Then, the 
equations of motion are wri t ten in the form (mass forces  are absent) 

h v - - v . V v - - ~ p = 0 ,  V . v = 0  (1.1) 

in the s t r i p - r  < xl < ~, - 1  < x 2 < f (x0 .  Here,  x 2 = f(xl) is the equation for the free surface,  which by 
assumption is projected one- to-one onto the bottom x 2 = - 1 .  We seek solutions that are periodic in 

v(x, + l, x2) ~ v ( x ! ,  x~), p(x  l +  l, x 2 ) ~ p ( ~ l ,  x~), ](x~-~- l) ~ ] ( x l )  (1.2) 

We denote by D the "rectangle" 0 < Xl < l, - 1  < x 2 < f ,  with the bottom leg 2] = {Xl, x2 : 0 < x I < l ,  

x 2 = - 1 } ,  and the curvi l inear  upper leg F = {xl, x2:0 < xl < l, x 2 = f(xl)}; ~ denotes the c losure  of ~. 

We denote by n the outward-normal unit vector ,  and by ~" the unit vector  tangent to the free surface.  
The boundary conditions at  the free surface have the form 

Vlr.n = 0, n. Ttr ,~ = 0 (1.3) 

( ~ )  = ~ n ' T I r ' n  (i .4) 

T ~ - - - - p ~ ; §  2Sij , i, ] = t,2, 2S~; = Ovi /Ox~-+-Ovj /Ox~ 

Here,  T is the s t r e ss  tensor ,  Sii is an element of the s t ra in  rate tensor ,  the pr ime signifies differen- 
2 ~ -.i tiation with respec t  to Xl, and p = pv  (crh) is a dimensionless pa ramete r  related to the coefficient of sur-  

face tension ~. The f i rs t  condition (1.3) signifies the absence of fluid flow across  the free boundary,  and 
the second condition states that the tangential component of the s t r e ss  vector  acting on the free surface 
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must vanish. Condition (1.4) states that the normal component of the stress vector is equal to the surface 
pressure, which according to the Laplace equation is proportional to the curvature of the free surface. 

Requiring that the dimensionless average depth of the fluid be equal to unity, we find that 

l 

I]dx:-- o (1.5) 
0 

We also require  fulfillment of the inequality [fl - 8 < 1 for all xi (5 = const > 0), which precludes 
the possibility of contact  of the free surface with the bottom. 

Finally, for the sys tem (1.1), we impose the following boundary condition on the bottom: 

vie  = w(xl) (1.6) 

Here,  w is a given vector  function, / -per iodic  in x, such that the res t r ic t ion  of w to [0, l] is a function 
in the HSlder class  C 2+~, 0 < ~ < 1, finite in (0, l). (See, e.g.,  [1] for the definition of the HSlder spaces 
C m+c~, integer-valued m -> 0.) If ~(x)~ C m+(~ (Q), where Q is a closed bounded domain, then, I ~ t m + ~  de- 
notes the norm of q~ in C m+~. The express ion w ~ C2+~ l] signifies that every  component of the vector  
w is a member  of C 2+i [0, l]. The s teady-s ta te  requi rement  yields the additional condition 

l 

I w~dx: = 0 (1.7) 
0 

which connotes zero  total fluid flow ac ross  each "cell" of the bottom. 

The stated problem calls for the determination of twice continuously differentiable functions v(xi, x2) 
and f(xl) ,  as well as a continuously differentiable function P(Xl, x2), all of which satisfy relat ions (1.1)-(1.6). 

We note that the division of the conditions at the free boundary into two groups (1.3) and (1.4) is not 
mere ly  fortuitous. It is dictated by the proposed method of solving problem (1.1)-(1.6). In the f i rs t  stage 
the form of the free surface is fixed. For  a fixed f ,  theboundary-value problem with conditions (1.2), (1.3), 
and (1.6) is solved for the s y s t e m  (1.1). We re fe r  to this problem hereinaf ter  s imply as the auxiliary p rob -  
lem. A remarkable  feature of the auxil iary problem is the fact that it is solvable "in the la rge ,"  i.e., with- 
out any constraints  on the initial data. 

F rom the solution of the auxil iary problem, we determine n .  TI F .n and substitute the resul t  into the 
other  condition (1.4) at the free boundary. The relat ion so obtained can be treated as an equation for the 
determinat ion of a curve of specified curvature~ Inverting the curvature  opera tor  with conditions (1.2) and 
(1.5), we a r r ive  at  an equation f = F(f),  where F is a nonlinear continuous opera tor  in a cer tain Banach 
space.  We prove that for small  Iw[ 2+~ this equation has a solution unique "in the smal l . "  

An essent ia l  feature of the proposed approach to the stated problem with an unknown boundary is the 
introduction of the surface tension into the boundary condition on the free surface.  It is, in fact, this fea- 
ture that enables us to reduce problem (1.1)-(1.6) to a manageable opera tor  equation. It is important  to 
mention that the role of the surface tension as a regulating factor  in f ree-boundary  problems has been in- 
dicated ea r l i e r  by Garipov [2] and Shcherbina [3] (as communicated to the author by V. Kh. Izakson, the 
introduction of surface tension in the problem of the initiation of thermal  convection in a fluid layer  with a 
free boundary makes it possible to reduce it to the c lass ica l  problem of finding the bifurcation points of a 
completely continuous operator) .  

2 .  F u n d a m e n t a l  D e f i n i t i o n s  a n d  I n e q u a l i t i e s  

Consider the space Lz(~) formed by two-dimensional  vector  functions /-periodic in xi whose com- 
ponents are square summable over  a domain 9. The sca la r  product in L2(~) is defined by the equation 

(u, v) = ~ u .  v d . T  

0 

and the norm Ilu]l = (u, u)l/~~ 
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We b r ing  in the o p e r a t o r  
l i n e a r  p r o b l e m s  

.A, which e s t a b l i s h e s  a c o r r e s p o n d e n c e  be tween  the so lu t ions  u(x) of  the 

- - A u + V p = ~ ( x ) ,  V . u = 0 ,  z ~ _ ~  (2.1) 

u ( x ~ + l , z ~ ) ~ u ( z , x ~ ) ,  u l ~ = 0 ,  u l r . n - 0 ,  n. T I r . * = 0  (2.2) 

and t h e i r  f r ee  t e r m s  L(x), namely~r  = g. The domain  of def ini t ion D A of the o p e r a t o r  o~ c o n s i s t s  of 
so leno ida l  v e c t o r  funct ions  u E C2(fl) C ' (~)  sub jec t  to the bounda ry  condi t ions  (2.2). The o p e r a t o r  ~ is 
s y m m e t r i c ,  s ince  for. u, v ~ D., 

(~4u, v) = S(--  a u +  Vp).vdx =-~-aoi.~=~\ox~ T -g~/k~-~ ~ § -g-;Jdz~ 2 ~ S,) (u) 5'ir (v) dx 
-q , i , j = l  

In the de r iva t i on  of the l a t t e r  equat ion the G r e e n ' s  f o r m u l a  fo r  the Stokes  s y s t e m  [1] is used .  The 
s u r f a c e  i n t e g r a l s  r e s u l t i n g  t h e r e f r o m  vanish  due to condi t ions  (2.2). On the s e t ,  we in t roduce  the new s c a -  
l a r  p roduc t ,  a s s e r t i n g  by de f in i t ion  tha t  

2 

' I (2.3) [u, vl = -~- 
i , j=l 

It  is  e a s i l y  shown tha t  a l l  a x i o m s  of the s c a l a r  p roduc t  a r e  s a t i s f i e d  fo r  (2.3). In p a r t i c u l a r ,  i f  [u,u] = 
0, then,  Sij(u) = 0 fo r  xE ~ .  We in fe r  f r o m  the l a t t e r  c o n s i d e r a t i o n s  and f r o m  u[ Z = 0 tha t  u = 0 in ~2. 

Comple t ing  the s e t  D~  on the n o r m  [lu]I, we obta in  a subspace  of L2(12), which we denote by J(~2). 
We denote by G(~2) the o r thogona l  c o m p l e m e n t  to J(~2) in L2(~). Fol lowing [1], we can  show tha t  G(~2) con-  
s i s t s  of ~7q~, w h e r e  ~v E W21 (~2) (see,  e .g . ,  [4] for  the def ini t ion and p r o p e r t i e s  of  the Sobolev s p a c e s  w m ) .  If 
r E wm(~2), then,  the symbo l  l[ q~ II {,, n~) deno tes  the n o r m  of ~v in W m.  If m = 0, the s u p e r s c r i p t  in the nota-  
t ion [[~ r[~ ) is d ropped .  ~ 

The comple t i on  of the s e t  D~ on the n o r m  [llu]lr = [u, u]l /~yields a H i l b e r t  s p a c e ,  which we ca l l  the 
e n e r g y  space  of the o p e r a t o r  ~ and denote  by tt(~2). Note tha t  the e l e m e n t s  of tI(~2) s a t i s f y  "on the a v e r -  
a g e "  a l l  the bounda ry  condi t ions  (2.2) excep t  the las t :  n .  Tr F ' ~  = 0. In the t e r m i n o l o g y  of [5], the l a t t e r  
condi t ion is  na tu ra l  fo r  the d i f f e ren t i a l  o p e r a t o r  ~4, and the r e m a i n i n g  condi t ions  (2.2) a r e  p r inc ipa l  condi-  
t ions .  

By v i r tue  of  (2.3), the space  tI(~2) is  a s u b s p a c e  of the v e c t o r  space  W21 (9) with n o r m  

IIurl2(') = I .  

An exceed ing ly  i m p o r t a n t  c o n s i d e r a t i o n  is  the fac t  tha t  the n o r m s  1] u [] ~l) and ]I[u III a r e  equ iva len t .  It  
i s  c l e a r  tha t  riIu][[ -< c][ull 11), w h e r e  C can be eva lua t ed  as  2. The p roo f  of  the c o n v e r s e  inequa l i ty  be tween  
the n o r m s  in H and W21 is  b a s e d  on two inequal i t i es  tha t  hold fo r  u in tI  (~2). The f i r s t ,  

I u ]~ dx ~ C1 S ] Vu 12 dc (2.4) 

is  p roved  as  in [1]; C 1 can  be eva lua ted  a s  the n u m b e r  (1 + 5) 2, w h e r e  5 = max  [fr  (here ,  and e l s e w h e r e ,  the 
quant i t i es  C k, k = 1, 2, 3, . .  �9 denote  pos i t ive  cons tan t s ) .  In the p roo f  of  (2.4), use  is  made  of the dens i ty  
of  D~ in H(~2), and the fac t  tha t  u l F = 0 fo r  u ~ D~. 

The second  inequal i ty  is a v a r i a n t  of the wel l -known Korn  inequal i ty  in the t h e o r y  of e l a s t i c i ty ;  fo r  
any u 

2 

~q ~ i 

w h e r e  C 2 depends  only on the domain  ~2. Inequa l i t i es  of the type (2.5) have  been  v e r i f i e d  fo r  v a r i o u s  s u b -  
Spaces  of W2 t by  A. Korn ,  as  wel l  as  by  F r i e d r i c h s  [6], Eidus  [7, 8], and o t h e r s .  Due to the space  l imi t a t ions  
of the a r t i c l e ,  we do not g ive  the p roof  of (2.5): We m e r e l y  point  out tha t  it is v e r y  much  l ike the p roof  in 
[7]. On the b a s i s  of (2.4) and (2.5), we obta in  
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The l a t t e r  i n e q u a l i t y  i m p l i e s  tha t  the o p e r a t o r  ~ is  p o s i t i v e  def in i t e  [5]. It fo l lows f r o m  inequa l i t y  
(2.5) and  a t h e o r e m  of Re l l i ch  [1] tha t  any  bounded  s e t  in  H(~) i s  c o m p a c t  in  J ( ~ ) .  

The f o r e g o i n g  p r o p e r t i e s  of  the o p e r a t o r  ~ 4 a n d  i ts  e n e r g y  s p a c e  H(~) enab le  us to p rove  the e x i s t e n c e  
of the e i g e n f u n c t i o n s  of  the  o p e r a t o r .  The e igen func t ions  e k,  k = 1, 2, 3, �9 � 9  a r e  the so lu t i ons  o f t h e  p r o b l e m s  

- - A e ~ + V q ~ = L ~ e ~ ,  V . e ~ = 0 ,  x~_Q 

e~ (xl -~ l, x~) ~ e~ (xl,  x~) 

e~]~=O, e ~ l r - n = O ,  n - T ( e ~ . ) ] r . r = O  

Invoking a v a r i a t i o n a l  me thod  in a c c o r d a n c e  wi th  the s c h e m e  d e s c r i b e d  in [5], we deduce  the fo l lowing  
r e s u l t s .  The o p e r a t o r  ~/ has  an  in f in i te  s e t  of e i g e n v a l u e s  0 < X1 --< X2 �9 �9 �9 -< Xn ~ �9 �9  Xn ~ ~ 1 7 6  a s  n ~ ~  
The i n v e r s e  of  ~/ i s  con t inuous .  The e i g e a f u n c t i o n s  of .~ f o r m  a s y s t e m  tha t  i s  c o m p l e t e  and o r t hogona l  
both  in  J (~ )  and  in  H(~) .  The funct ions  e k  a r e  i n f i n i t e l y  many  t i m e s  d i f f e r e n t i a b l e  in  ~ .  T h e i r  s m o o t h n e s s  
in a c l o s e d  d o m a i n  i s  d e t e r m i n e d  by  the s m o o t h n e s s  of  F o If f E  C m + l + ~  [0, l ] ,  m --- 1, the func t ions  e k a r e  
of  the H h l d e r  c l a s s  C m+c~ (~).  T h e s e  func t ions  a s  so lu t i ons  of c e r t a i n  v a r i a t i o n a l  p r o b l e m s  s a t i s f y  the 
n a t u r a l  b o u n d a r y  cond i t ion  fo r  the o p e r a t o r  ~g , n .  T I F ~ T = 0 in the c u s t o m a r y  s e n s e .  

Next ,  we c o n s i d e r  i n e q u a l i t i e s  (2.4) and  (2.5). A c c o r d i n g  to [1, 6 -8 ] ,  they  hold for  d o m a i n s  hav ing  a 
p i e c e w i s e - s m o o t h  b o u n d a r y .  We e x a m i n e  the f a m i l y  of d o m a i n s  Q bounded  above  by  v a r i o u s  c u r v e s  F : x  2 = 
f ( x i ) ,  0 _< xI -< l .  We a s s u m e  tha t  the func t ions  f a r e  bounded  in the a g g r e g a t e  on the n o r m  of  CI+~  
so tha t  l f l  l+~  -< 5 < 1. I t  then  t u r n s  out  tha t  the c o n s t a n t s  C1 and C 2 in  i n e q u a l i t i e s  (2.4) and (2.5) can  be 
c h o s e n  so a s  to be  i n d e p e n d e n t  of  the d o m a i n  ~ (we a l s o  a s s u m e  tha t  th i s  cho ice  has  a l r e a d y  b e e n  made ) .  
The f o r e g o i n g  a s s e r t i o n  i s  p r o v e d  by  a s i m p l e  c o n t r a d i c t i o n  a r g u m e n t .  

3 .  G e n e r a l i z e d  S o l u t i o n  o f  t h e  A u x i l i a r y  P r o b l e m  

In th is  s e c t i o n ,  we p r o v e  the e x i s t e n c e  of a g e n e r a l i z e d  s o l u t i o n  of p r o b l e m  (1.1)-(1.3),  (1.6). We a s -  
s u m e  tha t  the c u r v e  F is  s p e c i f i e d  by  func t ions  f (x l )  E C I + ~ [ 0 ,  l] and I f I l + ~  -< 5 < 1. 

L E M M A  301o L e t  t h e r e  be s p e c i f i e d  on [0, l] a f u n c t i o n w ( x l ) ,  f in i te  in (0, l ) ,  and s a t i s f y i n g  (1.7), such  
tha t  w E C m + ~ ,  i n t e g e r - v a l u e d  m _> 2. Then,  a v e c t o r  funct ion  a(x) e x i s t s ,  such  tha t  

a(xi , -- l )=W(Xl) ,  a ~ C ' + ~ ( ~ ) ,  V-a~--O for x~ff2  

a v a n i s h e s  ou t s i de  the r e c t a n g l e - 1  _< x2 < --(1 + 5)/2, x l ,  E supp  w, and for  any  u E H(f~) 

Here, C 2 is the constant in inequality (2.5), and supp w denotes the support of w (see [9, I0, I] for the 
proof of the lemma). The indicated proofs yield the explicit construction of a solenoidal continuation a of 
the vector w into the domain ~. The situation can also be so arranged such that 

We choose  and  fix fo r  a l l  t i m e  one of the con t inua t ions  a(x) a c c o r d i n g  to L e m m a  3.1.  

A g e n e r a l i z e d  so lu t i on  o f  the a u x i l i a r y  p r o b l e m  is  a funct ion  v{x) such  tha t  v - - a  = u ~ t t (~ ) ,  and  fo r  
any  r E H(~2), the fo l lowing  i d e n t i t y  h o l d s :  

2 [u + a,@} --  { u +  a , u +  a, ~ } =  0 (3.2) 

in which  the e x p r e s s i o n  [u, v] is  de f ined  by  Eq.  (2.2), and  the fo l lowing no ta t ion  has  b e e n  i n t r o d u c e d :  

{u, v, w). = S u- v- Vwdx 

If a g e n e r a l i z e d  s o l u t i o n  v E W22(~') fo r  any  i n t e r i o r  s u b d o m a i n  ~ '  of  ~ ,  then,  t h e r e  is  a func t ion  p(x),  
unique up to a c o n s t a n t  t e r m ,  such  tha t  ~Yp E L 2 (~'), and  i nequa l i t y  (1.1) ho lds  a l m o s t  e v e r y w h e r e  in ~ (an 
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analogous a s s e r t i o n  with r e g a r d  to the genera l ized  solution of the f i r s t  boundary-value p rob lem for  (1.1) 
has  been proved in [1]). 

LEMMA 3.2. Let  v(x) be a genera l ized  solution of the auxi l ia ry  problem.  Then, an upper  bound 
I[v II ~)  ex i s t s ,  depending only on w, 5, and I. 

For  the proof  of the l emma,  we put @ = u in the identity (3.2). Noting that for  u r H(~2), and the cho-  
sen  a 

{ u , a , u }  = 0, { u , u , u }  = 0 

we r e d u c e  re la t ion  (3.2) to the fo rm 

2 I1[ u Ill 2 = {a, u,  u} q- {a, a, u} - 2 [a,~u] (3 .3)  

Applying inequali t ies (3.1) to the es t ima te  of the f i r s t  t e r m  on the right-hand side and making use of 
inequality (2.5) and the Cauchy-Bunyakovsk i i  inequality, we infer  f rom (3.3) that 

Ill u][I ~< 2t[all~ 1) + W-3 (n all,) 2 = Co (3 .4)  

Inasmuch as  [Ivll~') <_ Ilulll l) + ]latll 1), and the norms  Itu[l~l) and IIlulll a r e  equivalent ,  L e m m a  3.2 is 
thus proved.  

THEOREM 3.1. At l eas t  one genera l ized  solution of the auxi l ia ry  p rob lem exis t s .  

The theo rem is proved by the method of Galerkin accord ing  to the scheme  proposed by Fujita [10] in 
an invest igat ion of the f i r s t  boundary-value p rob lem for  the Nav ie r -S tokes  equations.  For  any n-> 1, we 
cons t ruc t  an approx imate  solution of the p rob lem in the fo rm 

n 

v n = a ~ u . ~ a ~  ai% 
i=1 

The unknown coefficients  ~i in the expansion of u n on the bas i s  {el} in H(~) a r e  de te rmined  f rom the 
conditions 

2 [u~ § a, ed --  {u,~ + a, u~ ~- a, el} = 0 

for  every  i = 1, . . . ,  n. As in [10], we es tab l i sh  an a p r io r i  e s t ima te  of u n in tt(fD, that is independent of n, 
and prove the exis tence of an approx imate  solution. The boundedness of u n impl ies  that there  is a subse-  
quence of Un weakly convergent  in I-I(9). By the Sobolev embedding t heo rem (see, e .g. ,  [4]), it converges  
s t rongly in L4(~)). We read i ly  infer  f rom the la t te r  fact  that its weak l imi t  u = v - a  sa t i s f ies  the identity 
(3.2), and thus, de te rmines  a genera l ized  solution of the auxi l ia ry  p rob lem.  

THEOREM 3.2. If Iw] 2+c~[0,/] is sufficiently smal l ,  the genera l ized  solution of the auxi l iary  p rob lem 
is unique. 

The proof  of the theorem is based  on the der ivat ion of the es t imate  Illutl I _< c 7 Iwl 2+~ (1 + lw] 2+v~), 
which follows f rom (3.4) and the p rope r t i e s  of the continuation a of the vec tor  w. Otherwise ,  it follows the 
proof  of the uniqueness t heo rem for  slow s t eady-s t a t e  flows (the f i r s t  boundary-value problem) in [1]. 

We note in conclusion, that the exis tence and uniqueness theo rems  for the genera l ized  solution of the 
auxi l iary  p rob lem a re  a lso  t rue  in the case  of weaker  assumpt ions  regard ing  the smoothness  of w(xl). 
Theo rem 3.1 r em a i ns  valid if w fi W21/~(0, l), and in o rde r  for T h e o r e m  3.2 to hold t rue ,  it is suff icient  for  

]iwl I ~2 to be smal l .  

4 .  S m o o t h n e s s  o f  t h e  G e n e r a l i z e d  S o l u t i o n  

We now invest igate  the different ial  p rope r t i e s  of the genera l ized  solution of the auxi l ia ry  problem,  
and their  dependence on the smoothness  of the boundary F. 

THEOREM 4.1. If ] ~ C m+l~ [0, l], w ~ G ~+~ [0, l], m >~ 2, then, the genera l ized  solution v of the 
auxi l ia ry  p rob lem belongs to C m+c~ (~), ~Yp E C m-2+~ (~). 

The proof  is based  on two l e m m a s  concerning the solution of the l inear  p rob lem (2.2) for the Stokes 
s y s t e m  (2.1). 
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LE1V[MA 4.1.  If s E Lr(~2), r > 1, and  f E C 3 [0, l ] ,  then ,  the c o r r e s p o n d i n g  so lu t i on  u of p r o b l e m  (2.1)- 
. (~) 

(2.2) be longs  to w r (~), ~Tp E L r ( ~ ) ,  and  

II u[17 ) + II Vp I[~ < c~ tl; I1~ (4 ol) 

m 

L E M M A  4.2.  If ~ ~ C  ~-u+~ (if2), / ~ C ~+~+~ [0, l], m > 2, then ,  the s o l u t i o n  u of p r o b l e m  (2.1)-(2.2) b e -  
longs  to c m + ~ ( ~ ) ,  ~ p  E cm-2+ce( [ ) ,  and  

(4.2) 

We d e f e r  the p r o o f  of L e m m a s  4.1 and  4.2 unt i l  the end of  th is  s e c t i o n ,  showing for  now how t h e s e  
l e m m a s  i m p l y  the s t a t e m e n t  of T h e o r e m  4.1.  

Le t  v be the g e n e r a l i z e d  s o l u t i o n  of  the a u x i l i a r y  p r o b l e m .  Then,  u = v - a  and the c o r r e s p o n d i n g  p 
s a t i s f y  the s y s t e m  (2.1) wi th  ~ = A a - - v  .Vv and  the h o m o g e n e o u s  b o u n d a r y  cond i t ions  (2.2). A c c o r d i n g  to 
L e m m a  3.1 ,  A a  E cm-2+c~(~). Due to L e m m a  3.2,  we have  v ~ W21(ft). By the e m b e d d i n g  t h e o r e m  [4], i f  12 i s  
a p lane  bounded  d o m a i n  with  a p i e c e w i s e - s m o o t h  b o u n d a r y ,  then ,  the s p a c e  Win(f2) i s  e m b e d d e d  in Lq(12) 
wi th  q = 2 r / ( 2 - - r m )  fo r  r m  < 2, and  in Lq(9)  with any  f in i te  q for  r m  = 2. Us ing  this  t h e o r e m  wi th  r = 2, 
m = 1, and  the H S l d e r  i n e q u a l i t y ,  we i n f e r  tha t  v .~7v E Lr(~2) and ,  hence ,  ~ E Lr(f2) wi th  any f in i te  r .  F r o m  
L e m m a  4.1 ,  we deduce  the i n c l u s i o n  r e l a t i o n  v = u  + a E Wr2(fD. Then,  ~ v / 0 x i E  W r  1 (O), i = 1, 2. Us ing  the 
e m b e d d i n g  t h e o r e m  for  Wrm(~2) in c h ( u ) ,  0 < h < 1, for  r m  > n, w h e r e  n is  the d i m e n s i o n  of ~2 [1], and 
c h o o s i n g  r = 2/(1-- c~), we f ind tha t  3 v / 0 x  i E Cce(~), so tha t  ~ E Cc~(~2). In a c c o r d a n c e  with  L e m m a  4.2,  we 
in fe r  tha t  v = u + a E C2+(~(~). This  p r o v e s  T h e o r e m  4.1,  fo r  the c a s e  m = 2. If m > 2, the s a m e  r e a s o n i n g  
can  be  a p p l i e d  s e v e r a l  t i m e s .  

F o r  the p r o o f  of L e m m a s  4.1 and 4.2,  we use a p r i o r i  e s t i m a t e s  for  the  s o l u t i o n s  of  s y s t e m  e l l i p t i c  
in the D o u g l i s - N i r e n b e r g  s e n s e  [11]. An i m p o r t a n t  a l g e b r a i c  cond i t i on  has  been  f o r m u l a t e d  in [12, 13],  
n a m e l y  a c o m p l e m e n t a r y  cond i t i on  g u a r a n t e e i n g  the e x i s t e n c e  of  u l t i m a t e l y  s h a r p  e s t i m a t e s  in the n o r m s  
of  C m + a  and  W m for  the i n d i c a t e d  s y s t e m s .  We know f r o m  [13] tha t  the S tokes  s y s t e m  (2.1) is  Doug l i s - -  
N i r e n b e r g  e l l i p t i c .  S t r a i g h t - f o r w a r d ,  though l a b o r i o u s ,  c a l c u l a t i o n s  show tha t  the s e t  of b o u n d a r y  cond i t ions  
(2.2) fo r  the s y s t e m  (2.1) s a t i s f i e s  the c o m p l e m e n t a r i t y  cond i t ion .  

L e t  us s u p p o s e  tha t  u n d e r  the cond i t ions  of L e m m a  4.1 a so lu t i on  u E Wr(2)(~2) of p r o b l e m  (2.1)-(2.2) 
e x i s t s .  Then,  e s t i m a t e  (4.1) fo l lows  f r o m  the g e n e r a l  r e s u l t s  of Agmon ,  D o u g l i s ,  and  N i r e n b e r g  [12], and  
Solonnikov  [14]. The a b s e n c e  f r o m  the r i g h t  s ide  of  (4ol) of  a t e r m  of the f o r m  C llUl[r i s  a t t r i b u t a b l e  to the 
u n i q u e n e s s  t h e o r e m  fo r  p r o b l e m  (2.1)-(2.2):  i f  ~ = 0, then ,  u = 0, p = c o n s t .  I t  su f f i ce s  to v e r i f y  the e x i s -  
t ence  of a s o l u t i o n  of  (2.1)-(2.2) fo r  ~ = C ~ ( ~ ) ,  f E C ~ [ 0 ,  l ] .  Due to e s t i m a t e  (4.1), i t  i s  p o s s i b l e  by s u i t a b l e  
a p p r o x i m a t i o n s  to then  go o v e r  to the  c a s e  ~ E L r ,  f ~ C 3 [0 , l ] .  

I n t r o d u c i n g  the s t r e a m  func t ion  r by the  r e l a t i o n s  u 1 = ~ r  2, u 2 = - - ~ / 3 x l ,  we can  v e r i f y  the f ac t  
tha t  p r o b l e m  (2.1)-(2.2) is  e q u i v a l e n t  to the fo l lowing:  

AA4 = Z(x), x ~  
4 (xl + Z, x~) ~ ~ (xl, ~2), 4 [~ = 0, (04 / On)I~ = 0 (4.3) 

4Jr=O, A~--2K(x)(O 4/On) ir=O 

w h e r e  )/ = 0~ t /3x2- -O~2/3x  1, 3~ /0n  deno t e s  the d e r i v a t i v e  in the d i r e c t i o n  of the ou tw a rd  n o r m a l  to the 
b o u n d a r y  of  ~2, and  K is  the c u r v a t u r e  of  F .  

P r o b l e m  (4.3) is  s e l f - a d j o i n t .  I ts  s o l u t i o n  i s  unique,  a s  can  be p r o v e d  by  m u l t i p l i c a t i o n  of the e q u a -  
t ion  AA~ = 0 by  r  and  i n t e g r a t i o n  by p a r t s  o v e r  the d o m a i n  ~2 with r e c o g n i t i o n  of  the b o u n d a r y  cond i t i ons .  
The s y s t e m  of  b o u n d a r y  o p e r a t o r s  in (4.3) is  n o r m a l  and c o v e r s  the o p e r a t o r  AA (for the de f in i t ion  of the 
l a t t e r ,  s ee  [15]). The e x i s t e n c e  of a s o l u t i o n  r E C r162 of p r o b l e m  (4.3) is  now a d i r e c t  c o n s e q u e n c e  of the r e -  
s u l t s  of S c h e c h t e r  [15]. Th is  c o m p l e t e s  the p r o o f  of  L e m m a  4.1.  The p r o o f  of  L e m m a  4.2 i s  a n a l o g o u s .  

5 .  S u p p o r t i n g  L e m m a s  

It  fo l lows f r o m  the r e s u l t s  of  S e c s .  3 and 4 tha t  i f  ] ~ C ~+~ [0,l], w ~ C2+:[0,I], I]11+~ ~ 5 < I and 
twl2+~ _< e,  w h e r e  a > 0 is  s m a l l ,  then ,  the v e l o c i t y  v is  un ique ly  d e t e r m i n e d  in the s o l u t i o n  of  the a u x i l i a r y  
p r o b l e m ,  and the c o r r e s p o n d i n g  p r e s s u r e  is d e t e r m i n e d  by  the e u r v i l i n e a r  i n t e g r a l  
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~c 

p (x) = I (hv  - -  v .  Vv). ds + Po 
0 

in which  P0 = p(O) is  an  a r b i t r a r y  c o n s t a n t .  This  r e s u l t  p e r m i t s  us to b r i n g  in  the o p e r a t o r  ~ ,  which a s s o -  
c i a t e s  wi th  e v e r y / - p e r i o d i c  funct ion f ~ C ~+~ a funct ion  ~ D r (x 0] a c c o r d i n g  to the r e l a t i o n  

(l) = n.  T Iv" n + po (5.1) 

(he re ,  n and TI F a r e  t r e a t e d  a s  func t ions  of  xl ;  we po in t  out  tha t  the r i g h t - h a n d  s ide  of (5.1) does  not  depend  
on P0)- A c c o r d i n g  to T h e o r e m  4.1 the func t ion  ~]~ [](Xl)], be ing  a l i n e a r  c o m b i n a t i o n  of p and av i /0x  j wi th  
c o e f f i c i e n t s  in  C 2+~, i s  a m e m b e r  of the c l a s s  C l + ~ [ 0 ,  l ] .  M o r e o v e r ,  th is  funct ion  i s  / - p e r i o d i c  in x~. I t  i s  
r e q u i r e d  to show tha t  ~ (]) is  con t inuous  as  an o p e r a t o r  of  C ~+~ in C l + ~ [ 0 ,  l ] .  We f i r s t  s t a t e  the fo l lowing 
l e m m a .  

L E M M A  5.1.  Unde r  the cond i t ions  of  T h e o r e m  4.1,  the i ne qua l i t y  

(5.2) 

h o l d s ,  w h e r e  C10 does  not depend  on f o r  w, i f  [fl~+c~ -< 6, Iwl2+~ -< s .  

We s h a l l  not  g ive  the p r o o f  of L e m m a  5.1.  It is  b a s e d  on the S c h a u d e r  e s t i m a t e s  fo r  the so lu t i ons  of 
e l l i p t i c  s y s t e m s  [12, 14] and a r e p e t i t i o n  of the a r g u m e n t s  in  Sec .  4. 

Next ,  we i n v e s t i g a t e  the con t inuous  d e p e n d e n c e  of the s o l u t i o n  of the a u x i l i a r y  p r o b l e m  on f ,  i . e . ,  on 
the b o u n d a r y  F of  the d o m a i n  ~2. To do so ,  we t r a n s f o r m  to new i n d e p e n d e n t  v a r i a b l e s  ~ and ~ a c c o r d i n g  to 
the  r e l a t i o n s  

ze  - ! (z~) 
=Xl ,  ' 1 =  i + l ( ~ )  

The d o m a i n  ~ in th i s  c a s e ,  i s  t r a n s f o r m e d  into the r e c t a n g l e  II = {~,  77:0 < ~ < l ,  - 1  < ~ < 0}. The 
s y s t e m  (1.1) is  t r a n s f o r m e d  to the fo l lowing:  

O~u 2 (i + n) 1' 02u i + (i + n) e/,.z a.'u 
o~ i + l  o ~  + '  ( i + l )  ~ on e -? 

_]_ (i + n) [2[ '~ - (i -~- ]) !"] _~_ (i _ _  _ 
0 + t ) :  i + /  i + /  
Ou Oq (t -b ~1) 1' Oq 0 

- - u W - -  a-Y +" t+1  an 
a'-v 2 (i + ~l) !' aev t + (t + n) 2/'" O~v 
0~ i + / 00~ § (l +/p '  an e § 

+{(~+,~)[2!,".-(~+!)!"] (~+,~)j',, ,, } 0. a. 

Ou (1 q-~l) t' Ou t Ov 
o~ i + !  on + V ~ - 0 - f i - =  0 

Ou 
on 

l Oq 
t + f o ~  = 0  

(5.3) 

w h e r e  

U (~ ,  ~]) = V 1 (Xl,  X2) , V (~ ,  ~]) = V 2 (Xl,  X2) , q (~ ,  ~]) = p (Xl,  X2) , 

](xx) : I ( ~ ) , ] '  = d l / d ~  

The b o u n d a r y  cond i t ions  (1.2), (1.3), and (1.6) g e n e r a t e  the fo l lowing  b o u n d a r y  cond i t i ons  fo r  the s y s -  
t e m  (5.3): 

u ( ~ - k  l, ~1) ~-~ u (~ ,n ) ,  v(~-4- l, q ) ~ -  v(~,~l), q(~-}- l, TI)-~q(~JI) 

tt = w 1(~), v =  w~(~) for ~ l = - - I  (5.4) 

au i -}- 1,2 au ~ ]' (i + ]"-) av = 0, 
- - 2 1 ' ~ - +  i + /  aq + ( i - ] ' ~ )  -~ t + 1  on 

]'u v----0 f o r  q = 0  

The fo r ego ing  r e d u c e s  the s i t u a t i o n  to an i n v e s t i g a t i o n  of the con t inuous  d e p e n d e n c e  of  the so lu t i on  of 
the b o u n d a r y - v a l u e  p r o b l e m  (5.3)-(5.4) in a f ixed  doma in  on the, c o e f f i c i e n t s  of the equa t ions  and the b o u n d a r y  

(1) (1) (1) 3+~ cond i t i ons .  We denote  by u " , v " , q " (i = 1, 2), the so lu t i on  of p r o b l e m  (5.3)-(5.4) wi th  f = f i ( ~ ) ~  C �9 
[0, t ] .  
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LEMMA 5.2. If l f i [3+~ -< 5 < 1, i : 1, 2, and Iwl2+~ ~ ~, where ~ > 0 is sma l l ,  the following es t ima te  
holds : 

We m e r e l y  outline the plan of the proof,  inasmuch as the complete  proof  is r a t h e r  bulky. We denote 

u* = u (~ ) -  u (~), v* = v( 1 ) -  v(~), q* : q(1)_ q(~) 

Proceeding  f r o m  (5.3) and (5.4), we obtain for  u* ,  v* ,  and q* a s y s t e m  of l inear  equations with l inear  
boundary condit ions.  The right-hand s ides  of these equations and of the boundary conditions r e p r e s e n t  sums  
of products  of the functions u 0), v 0), and q0) or  thei r  de r iva t ives  by coeff icients  containing fac tors  of the 
f o r m  d k ( f t - f2) /d}  k, k = 0, 1, 2. For  example ,  the l as t  condition (5.4) yields  the condition f 2 ' u * - v *  = 

--  ( f l - - f 2 )  'u(I )" 

The resul t ing  l inear  s y s t e m  in u *, v* ,  and q* is Dougl i s - -Nirenberge l l ip t ic ,  because  i ts  pr incipal  
par t  is the Stokes s y s t e m  t r a n s f o r m e d  to new independent va r i ab les ,  and this t r ans fo rma t ion  p r e s e r v e s  the 
el l ipt ic i ty  p rope r ty  [13]. The boundary-value p rob lem for  it sa t i s f i es  the complemen ta r i t y  condition, be-  
cause  this condition is sa t is f ied by the or iginal  p rob lem.  It  is impor tan t  to rea l i ze  that for s m a l l  e, the 
new p rob lem has a unique solution (this fact  essen t ia l ly  follows f rom T h e o r e m  3.2 on the uniqueness of the 
solution of the auxi l ia ry  p rob lem for smal l  lwl 2+~). The foregoing r e su l t  enables  us to deduce Schauder 
a p r io r i  e s t i m a t e s  for  u*, v*, and q* d i rec t ly  in t e r m s  of the r igh t -hand  s ides  of the equations and the 
boundary condit ions.  

Using the r e su l t s  of [12, 14], we read i ly  es tab l i sh  the following inequali t ies:  

I u*le+~,ff + I v* ]2+~,I] + t Vq* [~,~ ~ Cx~ I]~ - -  f~. 18+~ lo, q 

Inasmuch as  the mapping (xt, x2) - - (} ,  r?) belongs to c lass  C 3+~, we the re fore ,  have u (i), v (i) E C2+~(H) 
(i = 1, 2), Vq E CC~(Ii), and 

The requ i red  e s t ima te  (5.5) follows f r o m  the l as t  two inequalit ies and inequality (5.2). 

LEMMA 5.3. Let  the conditions of L e m m a  5.2 be sa t is f ied.  Then, 33 (3 ~ C ~+~ [0, / ] ,  and the follow- 
ing e s t ima te  holds:  

133 ([~) --  33 (]z)t~+~,[o,t:t < C~4 ] w 12+~,[o,q I/~ -- /2 ]~.~,ro,q (5.6) 

The prooI  is based  on the t r an s fo rm a t ion  to va r i ab les  ~, ~, and the subsequent  appl icat ion of L e m m a  
5.2. Calculating the exp re s s ion  n �9 T{ F "n in these va r i ab l e s ,  we obtain 

[/(~)1 = [ - -  (l + ]'~)q + 2[ '20uo~ (5.7) 

2/' (i +/'=') Ou 2f' Ov 2 (i +/,2) Ov ] - -  i-]-f 0q ~--~ l + f  ~ for ~ l = 0  

As mentioned,  u, vE C2+~(~-), q E CI+~(~-). There fo re ,  33 (f) ~ C 1+~ [0, 1]. Determining the difference 
3~ ( [1 ) "  33 (]~) by (5.7) and invoking e s t ima te  (5.5), we a r r i ve  at  the requi red  inequality (5.6). 

6 .  D e t e r m i n a t i o n  o f  t h e  F o r m  o f  t h e  F r e e  S u r f a c e  

The following t heo rem  c o m p r i s e s  the fundamental  r e su l t  of the a r t i c le .  

THEOREM 6.1. Let the function w(xl) satisfy the conditions of Sec. i, and let lwI2+~, [0, l] _< ~, 
where E > 0 is sufficiently small, then, a solution of the free-boundary problem (1.1)-(1.6) exists, such that 
vE C2+~ p E CI+~(~), f E C 3+~ [0, l]. This solution is unique in a certain neighborhood of zero of the 
product space 

c ~+~ (Q) • c '+~ (o7 • c 3§ [0, zl. 
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Proof. Under the conditions of the theorem there is a solution of the auxiliary problem, v E C2+~(9), 

p ~ CI+~(~,). In this case, v is uniquely determined for small g, and p is determined up to a constant term 

P0. From the solution of the auxiliary problem, we determine n. T IF'n as a function of xl = ~, and substi- 

tute the result into condition (1.4). Using the notation (5.1), where ~ (1) is now uniquely determined, we 

write (1.4) in the form 

1' ~~ (6.1) 
V ~ ]  = ~ (I) - ~po 

The existence of an / -per iod ic  solution f (  0 of Eq. (6.1) requi res  that the average value of the r ight-  
hand side of (6.1) on the interval [0, l] be equal to zero.  We therefore ,  find:p0 = ~ (/), where ~ (/) is the 
value of the function ~ [ f  (~)]. Now, the p ressure  is automatically uniquely determined in the solution of the 
auxiliary problem. Theorem 6.1 will be proved, if we can find an / -per iod ic  solution f ~  C ~+~ [0, l], with 
f = 0 and show that this solution is unique, if If[3+~ is sufficiently small .  

Let 81 > 0 be so small  that for ]wl2+ ~ _< 81 inequality (5.6) is true and, in addition, 

~e[0,zlmax I ! { . 9 [ / ( v ) ] - - . 9 ( / ) } d v l ~ < l  

for any f ~ C~ +~ [0, l], such that If] 3+~ -< 5 and 6 < 1 is fixed. This choice of 81 is permiss ible  (for fixed p) 
by virtue of Lemma 5.1 and the definition of ~ (1"). Then, Eq. (6.1) is t ransformed by twofold integration to 
the form ] = ~ (/), where 

(]) = I ,  I { +  tl • [, - ( .  io 
0 0 0 

(6.2) 

and f0 is a constant equal to the average value on [0, l] of the f i rs t  t e rm on the right-hand side of (6.2). We 
denote by N the subspace of C3+~( - ~o, ~) formed by / -pe r iod ic  functions having zero-valued period averages .  
It follows f rom the definition of ~ and Lemma 5.3, that ~ (]) ~ N, i f f  ~ K 5, where K5 is the ball Ifl3+G -< 
5 < 1 in the space N, and 

where Cl5 is independent of w, if Iw[2+~ -< ~t. Let e2 : min (el, C15-15), whereupon for IwI2+G -< ~2 the 
operat ion ~ (]) maps the ball K5 into itself.  F rom the definition (6.2) of the opera tor  S and inequality 
(5.6), we deduce the est imate 

I d (11) - -  ~ (I2) I8+~ ~ C16 [ Vtr 12+z l i ,  - I~ 13+= (6 .3 )  

for any f l ,  f2E K6. We now put 8 = rain (g2, C16 -1 ~), where /3 > 0 is any number less than unity. We infer 
on the basis of (6.3) that for Iwl 2+(~ -< 8 the continuous opera tor  ~ (]) is contractible in the ball K 5, so that 
the equation ] = ~ (]) has a unique solution in that ball. This proves the theorem. 

7 .  O t h e r  S t e a d y - S t a t e  F r e e - B o u n d a r y  P r o b l e m s  

f o r  t h e  N a v i e r  -- S t o k e s  E q u a t i o n s  

Other plane steady-state problems for the Navier--Stokes equations are  investigated analogously on 
the assumption that the free boundary does not have points of contact with the bounding so l id  surfaces .  We 
cite as an example the problem of s teady-s ta te  periodic waves in a heavy liquid over  a sloping periodic 
bottom. It is proved that if the bottom is sufficiently smooth and its angle of inclination with respec t  to the 
horizontal  plane is sufficiently small ,  then, the solution is uniquely determined by specification o f  the mass 
flow or average depth of the liquid. 

Another example is afforded by the problem of the steady motion of a fluid in the annular space be-  
tween a rotat ing solid cyl indrical  surface and a f ree boundary on which the p re s su re  is given as a function 
of the polar  angle. It is proved that if this function is a lmost  a constant, the solution of the problem is 
determined by specification of the a rea  of the curvi l inear  annulus occupied by the fluid. In this case the 
motion is not necessa r i ly  slow; however, it must  be close to the rotat ion of the fluid as an integral  solid. 
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The technique described above for the analysis of plane problems involving a free boundary makes it 
possible to investigate certain three-dimensional problems as well. A representative example is the prob- 
lem of a doubly periodic flow in a layer whose upper boundary is free and whose lower boundary is a solid 
plane investigated with a periodic alternation of ingress and egress zones. Here, the three-dimensional 
analogs of Theorems 3.1 and 3.2 on the existence and uniqueness of a generalized solution of the auxiliary 
problem are valid. If we postulate that this solution has HSlder~continuous second derivatives up to the 
free boundary, we can obtain results analogous to the lemmas and theorems of Secs. 4 and 5. In the final 
stage it is required, instead of Eq. (6.1), to solve an equation of the same type as the equation for minimal 
surfaces having a nonlocal operator on the right-hand side. Considering the velocity given on the bottom to 
be sufficiently small and adopting the above-indicated assumption with regard to the solution of the auxiliary 
problem, we can show that a doubly periodic free surface is uniquely determined in the small by specifica- 
tion of the average depth of the liquid. 

In conclusion, the authors would like to thank R. M. Garipov and V. Kh. Izakson for affording an op- 
portunity to become acquainted with the results of their unpublished work. 
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